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1. Introduction

As an instance of Grenander's method of sieves [2] for

adapting the maximum-likelihood approach to settings where the
target parameter is infinite dimensional, we have considered

density functions of the form

€00 = [ 2 otxn/0)6@y) = (0,%6) (). (1)

0]

Here G is an arbitrary cdf and ¢ is the standard normal density
function. In this note, we shall derive a characterization of

the cdf G* that solve the maximum-likelihood equation:

“L(G*) = max £(G) (2)
G
where £(G) is the likelihood function

n
“LG) = I £(x;) (3)

determined by a random sample XXy e Xy from an unknown
population density fo.
Geman and Hwang [1] have described the connection between

this optimization problem and nonparametric maximum-likelihood

(o]

estimation. In brief, if we specify a sequence {Om - of

positive values with O ¥ 0 as m»> «, then the sequence of sets

S ={f : f = ¢, *G, G an arbitrary cdf}

m

defines a sieve of subsets of L the so-called convolution

1,

sieve. The method-of-sieves (i) fixes an index m, depending




on sample size n and on the sequence {om}, (i1) seeks the
*
solution G of (2) determined by the sample {Xi}2=1 and o

* %

and (iii) forms the estimator f_ = ¢ _ =xG .
m Op M

The familiar Parzen-Rosenblatt kernel estimator fits
within this framework. The kernel estimator prescribes G to
be the empirical cdf. One motivation for introducing the
convolution sieve is to study the relationship between the
kernel estimator and ones derived through the principle of
maximum likelihood.

Our characterization theorem for G* exhibits a rather
close relationship between f; and the kernel estimator based
on the Gaussian kernel. We shall show that the solution G*
of (2) is a discrete cdf and that it contains no more than n
points in its support. Thus, the estimator f; obtained from

the method-of-sieves admits a representation of the form

e
n(x) & L P ¢0m(x-yj),

j=1
analogous to a familiar form of the kernel estimator. In
contrast to the kernel estimator, the support

{yj} of G* does not coincide with the sample {Xi}2=1 and, in

general, the weights {xj} will not be identically equal to
n_l. Computational experiments with closely related sieves

strongly indicate that the number q of points in the support

of G* will typically be much smaller than sample size n.



2. Characterization Theorem

Theorem. Let XX s e e Xy be a random sample from a population
with density fo. Let ¢ > 0 and consider estimators f of fO
defined by (1).

(i) There exists a solution G* of the maximum-likelihood
problem (2)-(3).

(ii) If G* satisfies (2), then G* is a discrete cdf with

finite support. Denote supp(G) = {Sj}?=1. Then q < n.

(iii) X1y ~ min({xi}gzl) < max({xi}2=l) = X(pyo
: q q
then X(1) < mln({sj}j=1) and max({sj}j=1) < X ()

Proof: We may assume, for convenience and without loss of

generality, that o=1. The sample values can be rescaled,
setting §i = xi/c, if o#l.

The maximum of £ (G), if it exists, will be attained by a
cdf with support in [X(l)’x(n)]' To see this, consider an

arbitrary right-continuous cdf G and defined GO in terms of G by

0 , for x < X(l)
Gy ((-=,x]) = G((-=,x]), for x 1y < x < Xq
1 , for X(n) < X.

G, is designed so that GO({X(l)}) = G((-w,x(l)]) and
GO({x(n)})z= G([X(n),w)). Since ¢ is monotone on the separate

intervals (-«,0] and [0,»), we have




003 %) 6 Xy 2 | #GeyI6@y)  and

x(n)—o

1o
[ b (x-y)G(dy) .

-0
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¢(xi-x(1))G0({x(l)})

Consequently (¢*G0)(x) > (¢*G) (x) for all x in [X(l)’x(n)] and
hence ﬁf(GO) > £(G).

The existence of a solution G* of (2) follows from (i)
the compactness of the (tight) family of cdfs having support
in [X(l)’x(n)]’ and (ii) the observation that &(G) is a
bounded and continuous functional on this set of cdfs, 1i.e.
continuous with respect to the topology of weak convergence.

Let G* be a solution of (2) and set f* = (¢xG*). A
variational argument characterizes the points in the support of
G* as roots of a transcendental equation. Let s be an arbitrary

point in the support of G*. For any ¢ > 0 and for any z, define

a measure H b
S,€,2 Y

(B) = G*((s-e,s+e] N (B-z))

H yE,Z
Hy 5 is a rigid shift through distance z of G* restricted to
5 b
ES *
= 3 = X _ N + 1
(s-e,s+e]. Define Gs, G Hs,e,O Then Gs,e Hs,e,z 1s a

cdf for any z, and it may be regarded as a local perturbation
near s of G*,
Ser@ it ¢*[G +H ] and observe that f* = f .
S,€,Z S, S,£,Z s,e,0

Since Hf*(xi) is maximal, we have

n
) log f (x.)
i=1 S,E,Z l Z=O

1™



Evaluation of the derivative gives

n

_ d
0 = z f*{x ) dz (¢*Hs,€,z)(xi)|z=0
A S+e
& Z fw%g—j é; J ¢(Xi'Y'Z)G*(dY)I
e
S-€
S+g
= z ?‘*T_T J (Xi_Y)‘b(Xi'Y)G*(dY)-
s-€

Dividing this expression by G*((s-e,s+e]) and letting € > 0

yields

| e 0(x;-8) = 0,
= £%(x.) il
for any s in the support of G¥*.

Now consider the function
(x;-¥)
T(y) & Z ?wf——T ¢ (x;-y)-
The support of G* is a subset of the set of roots of T.
Properties of this set follow from the connection of T with

an extended Tchebycheff system. We can re-express T as

e-yz/z n —xi/z Xy -xi/z Xy
T(y) = = [xie e - e ye ]
V2 i=1
L2 n X.Yy X.y
L oY /2 [ ) (aje - b; ye t )}.
i=1

The expression in braces is a simple linear combination of the

X5y X;Yy
Zn functions [e , ye ]i=1' When the x;'s are distinct, this



set 1s an extended Tchebycheff system of order 2n. (And of
course if {Xi}2=1 is a random sample from population density
fo, then the xi's are distinct w.p.1l. If the xi's were not
distinct, we could reduce the order of the system accordingly

to express T(y) in terms of an extended Tchebycheff system with

fewer than 2n elements.) The Tchebycheff property implies:

iy z°

(i) z%°

{y : T(y)=0} has at most 2n-1 elements, and

{y : T(y)=0, T'(y) < 0} has at most n elements

(Karlin and Studden [3]).

Since the support of G* is contained in ZO, G* is discrete with

at most 2n-1 jumps.

In order to show that G* has at most n jumps, it suffices
to show that the support of G* is actually contained in Z+-,
i.e. that T'(s) < 0 for any s in the support of G*. For f*,
we can now write

q
F5(x) = ) p. ¢(x-s.)
j=1 J J

where {Sj}?=l is the support of G*, q < 2n-1, Pj > 0, and
E pj = 1. Set $=s, for fixed & between 1 and q. Let e > 0
1
and define a perturbation f8 of f* by
Py Py
£.(x) = j;g pjd(x-s5) + 7= d(x-s*e) + 3= ¢(x-s-¢).
The density f8 admits a representation of the form (1) and

f* = f Since Hf*(xi) is maximal,

0°




2

de” 1

o
it~

log fe(xi) < 0.

1 e=0

Straightforward calculation yields

n
'21 log £_(x;) = p, T'(s),
1=

Q-N' o
m ~N

e=0

and hence, as claimed, T'(s) < 0.

Finally, to confirm the last statement in the theorem,
observe that if s < X(l) for some s in the support of G*, then
¢(xi-s) is strictly increasing for sufficiently small increases

in s and for all X5 except perhaps X(l)' Further,

%g ¢(x(1)-s) > 0 as long as s < X(l); hence Hf*(xi) is a
strictly increasing function of s, contradicting the maximum-
likelihood property of G* and f*. The same reasoning precludes

s > X(n)' a



3. Concluding Remarks

The characterization theorem was announced in the paper
by Geman and Hwang [1], where consistency questions for f* are
analyzed. The consistency results guarantee that f* - fO
in Ll-norm, with probability one, provided that o - 0
sufficiently slowly as sample size n + o,

H. Robbins recently restimulated interest in the maximum-
likelihood problem per se during his lecture at the NASA
Workshop on Density Estimation and Function Smoothing at
Texas A§M University, March 11-13, 1982. Professor Robbins
recalled his 1950 formulation of the maximum-likelihood

problem (1)-(3) in [4] wherein connections are made with

statistical decision problems.
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